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Abstract

Recently resonance driving terms were successfully
measured in the CERN SPS and the BNL RHIC from the
Fourier spectrum of BPM data. Based on these measure-
ments a new analysis has been derived to extract multipole
strengths. In this paper we present experimental measure-
ments of sextupolar and skew quadrupolar strengths carried
out at RHIC. A non-destructive measurement using an AC
dipole is also presented.

INTRODUCTION & THEORY

In [1] Normal Form and Lie algebra techniques were
used to describe the motion of a particle confined in an ac-
celerator in presence of non-linearities. The particle posi-
tion x1 as function of the turn number N at a certain loca-
tion (indexed by 1) was given the following form,
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where Ix,y are the horizontal and vertical actions, νx,y are

the tunes, ψx1,y1 are the initial phases and f (1)
jklm are the

generating function terms. The generating function terms
are directly related to the Hamiltonian terms h(1)

jklm as fol-
lows,
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In [2] it was found that these terms experience a charac-
teristic variation around the accelerator lattice: their am-
plitude remains constant in sections free of multipoles and
shows abrupt jumps at the locations of these sources. The
analytical expression describing these abrupt changes is
given by
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where f (2)
jklm is the generating term at a second location,

∆φx,y are the horizontal and vertical phase advances be-
tween the two locations, the summation extends only over
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the multipoles placed between the two locations, φxq,yq are
the phase advances between the qth multipole and the first
location and hqjklm

are real quantities proportional to the

strength of the qth multipole and to the product β
j+k
2

xq β
l+m

2
yq ,

see [3] for a more detailed expression.
In [2] the measurement of amplitudes and phases of gen-

erating function terms was successfully achieved at two ac-
celerators: the CERN SPS and the BNL RHIC. This mea-
surement together with eq. (3) opens the possibility of mea-
suring magnet strengths. Indeed, if there is only one mul-
tipole between the two locations 1 and 2, its strength can
be directly inferred knowing the betatron functions. Never-
theless there are two limitations to this approach:

1. The existence of several multipoles between the
two locations avoids the measurement of particular
strengths. When this is the case an integrated strength
is obtained, namely the summation in eq. (3).

2. The measurement of fjklm at one location needs of
two BPMs separated by about 90◦ for the momentum
reconstruction. If non-linearities exist between these
two BPMs, fjklm can only be measured up to an error
in the order of the strength of the non-linearities. This
error is usually smaller than fjklm but would not be
negligible when measuring magnet strengths.

The first limitation is unavoidable given the BPM config-
uration. The second one is overcome by adopting another
approach using three BPMs. This new method follows.

The three BPM method

Assume that Fig. 1 represents the BPM and sextupole
configuration of certain segment of an accelerator. In the

✶ ✶ ✶ ……
BPM1 BPM2 BPM3

ψ1 ψ2 ψ3φ1, β1 φ2, β2 φ3, β3

ψ2 − ψ1 = π/2 + δ1 , ψ3 − ψ2 = π/2 + δ2

Figure 1: Segment of an accelerator lattice. BPMs and sex-
tupoles are shown with their relevant twiss parameters.

figure δ1 and δ2 have been introduced for later convenience.
A local observable is constructed from the BPMs turn-by-
turn signals as follows,

χ(N) =
x̂1(N)
cos δ1

+x̂2(N)
(
tan δ1+tan δ2

)
+
x̂3(N)
cos δ2

, (4)



where the hat means that the signal has been normalized
to the amplitude of the fundamental betatron oscillation.
These amplitudes and the phase advances δ1 and δ2 are ob-
tained from the Fourier transform of the signals. For an
ideal uncoupled linear machine χ(N) = 0 for any N and
for any set of three BPMs. Furthermore in presence of mul-
tipoles distributed around the ring, χ(N) only depends on
those non-linearities placed between the three BPMs. The
analytical proof of these statements and the following ex-
pressions is out of the scope of this paper. The equation
that relates χ(N) and the local sources is given by,
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where the local terms χjklm and the phases ψjklm are de-
fined as
χjklm =

n∑

q=1

ei[(1−j+k)φxq+(m−l)φyq]SEN(φxq)hqjklm

ψjklm = (1−j+k)ψx1 + (m−l)ψy1 + arg(χjklm) , (6)

where the summation extends over the multipoles in be-
tween the 3 BPMs, hqjklm

are the quantities proportional
to the strengths already introduced in eq. (3), and the func-
tion SEN(φxq) is defined as
{

sinφxq
√

1+tan2 δ1 if φxq<ψ2−ψ1

sin(φxq−δ1−δ2)
√

1+tan2 δ2 if φxq>ψ2−ψ1

(7)

Note that the above expressions largely simplify when δ1 =
δ2 = 0, giving χ(N) = x̂1(N)+x̂3(N) and SEN(φxq) =
sinφxq.

We have constructed a local observable χ(N) that de-
pends both on local magnet strengths and the distribution
of the three BPMs. The Fourier coefficients of this ob-
servable provide the local terms χjklm which are similar
to the Hamiltonian terms but strictly local. Therefore the
measurement of these terms represents a means of finding
lattice imperfections or unexpected multipoles in an accel-
erator.

RHIC MODEL
In order to compare results from the measurements of

sextupolar components to predictions a MADX model of
the RHIC yellow injection lattice has been constructed.
The interaction regions (IRs) have been modeled as de-
scribed in [6] using the corresponding magnet measure-
ments. Some dipoles in the IRs do not have magnetic mea-
surements. No sextupolar components have been assumed
for them. The arcs contain the chromaticity sextupoles and
the sextupolar components of the superconducting dipoles.
The arc dipoles have been sliced into 8 slices and the cor-
responding sextupolar multipoles have been placed in be-
tween.

RHIC EXPERIMENTS

During 2004 RHIC gold operation experiments to mea-
sure magnet strengths from BPM data were carried out in a
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Figure 2: Amplitude of the spectral line with frequency
−2νx (line (-2,0)) from the Fourier spectrum of χ(N) ver-
sus

√
2Ix.

similar way as in [4]. Transverse betatron oscillations were
excited either by injecting off orbit or by driving forced os-
cillations with the aid of an AC dipole. 1024 turn-by-turn
BPM data were recorded after every transverse excitation.
All experiments were performed at injection energy. The
tunes were moved closer to the third order resonance to en-
hance the sextupolar resonances, Qx=0.31 and Qy=0.22.
Chromaticities were Q′

x,y ≈ −2 units, where the prime de-
notes the derivative with respect to the relative momentum
deviation. For the presented measurements no IR correc-
tion circuits were used.

Prior to the data analysis the malfunctioning BPMs were
removed as reported in [5]. Yet a new failure mode of the
BPM system had to be pursued: few BPMs report on a dif-
ferent turn number than the rest. To find these faulty BPMs
the phase advance between consecutive BPMs as measured
from the Fourier transform is compared to that predicted
by the model. Those few BPMs having a larger deviation
from the model than the rest were rejected.

Measurement of χ3000 from kick data

The measurement of χ3000 is performed in a similar way
to that of f3000 as described in [2]. A line constrained to
go trough the origin is fitted to the amplitude of the spec-
tral line with frequency −2νx (line (-2,0)) from the Fourier
spectrum of χ(N) versus

√
2Ix. An example of this fit is

shown in Fig. 2 for a particular set of three BPMS. The
effect of beam decoherence has to be taken into account as
described in [2]. If the centroid oscillations are damped due
to amplitude detuning the line(n,0) is reduced by a factor of
|n|. Therefore |χ3000| is given by one sixth (from eq. (5)) of
the slope of the previous fit times two (only in presence of
decoherence). The measurement of |χ3000| around RHIC
yellow ring is shown in Fig. 3 with a comparison to the
model. The horizontal error bars of the plot are used to
delimit the segment of the lattice occupied by the 3 BPMs
(vertical lines are also used at the edges of the segment).
The center dot corresponds to the location of the middle
BPM. Model and experiment show good agreement in the
arcs. Discrepancies arise in the IRs partly due to the fact
that the model is not complete in these regions.
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Figure 3: Measurement of |χ3000| from kick data. The top
plot shows the beta beating. The middle plot shows |χ3000|
around the ring with a comparison to the model. The bot-
tom plot shows the sextupolar components of the ring.
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Figure 4: Measurement of |f ′3000| with an AC dipole. The
bottom plot shows the sextupolar components of the ring.

Measurements using an AC dipole

An AC dipole drives transverse beam oscillations at a
frequency close to the betatron tune. The non-destructive
measurement of resonance driving terms using an AC
dipole was proposed in [7]. The main finding of this pa-
per was that the resonance driving terms in presence of an
AC dipole, f ′jklm, differ from the natural resonance driving
terms fjklm in a quantity that increases with the separa-
tion of the driving and the betatron tunes. We have mea-
sured f ′jklm for the first time around the RHIC yellow lat-
tice. The measurement is shown in Fig. 4 together with a
prediction from the model. The horizontal error bars de-
limit the locations of the two BPMs. The few points that
show a discrepancy have a large horizontal error bar. This
large separation of the BPMs compromises the reconstruc-
tion of the momentum, introducing an error of the order of
the non-linearities within this region.
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Figure 5: Measurement of |χ3000| with an AC dipole. The
bottom plot shows the sextupolar components of the ring.

The resonance terms f ′jklm tend to fjklm when the driv-
ing tune approaches the betatron tune. Therefore for cer-
tain tune separations the measurement of magnet strengths
gives similar results with or without an AC dipole. We have
measured |χ3000| proceeding in the same way as in the pre-
vious section but using AC dipole data. No decoherence
factor has to be taken into account. The result is shown
in Fig. 5. The agreement is similar or better than for the
kick case. This demonstrates the feasibility of this kind of
measurement.
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